'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  a(x1) -> b(x1)
     , a(c(b(x1))) -> c(a(b(a(c(x1)))))
     , b(c(x1)) -> x1}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  a^#(x1) -> c_0(b^#(x1))
    , a^#(c(b(x1))) -> c_1(a^#(b(a(c(x1)))))
    , b^#(c(x1)) -> c_2()}
  
  The usable rules are:
   {  a(x1) -> b(x1)
    , a(c(b(x1))) -> c(a(b(a(c(x1)))))
    , b(c(x1)) -> x1}
  
  The estimated dependency graph contains the following edges:
   {a^#(x1) -> c_0(b^#(x1))}
     ==> {b^#(c(x1)) -> c_2()}
   {a^#(c(b(x1))) -> c_1(a^#(b(a(c(x1)))))}
     ==> {a^#(c(b(x1))) -> c_1(a^#(b(a(c(x1)))))}
   {a^#(c(b(x1))) -> c_1(a^#(b(a(c(x1)))))}
     ==> {a^#(x1) -> c_0(b^#(x1))}
  
  We consider the following path(s):
   1) {  a^#(c(b(x1))) -> c_1(a^#(b(a(c(x1)))))
       , a^#(x1) -> c_0(b^#(x1))
       , b^#(c(x1)) -> c_2()}
      
      The usable rules for this path are the following:
      {  a(x1) -> b(x1)
       , a(c(b(x1))) -> c(a(b(a(c(x1)))))
       , b(c(x1)) -> x1}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  a(x1) -> b(x1)
               , a(c(b(x1))) -> c(a(b(a(c(x1)))))
               , b(c(x1)) -> x1
               , a^#(x1) -> c_0(b^#(x1))
               , a^#(c(b(x1))) -> c_1(a^#(b(a(c(x1)))))
               , b^#(c(x1)) -> c_2()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {a(x1) -> b(x1)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a(x1) -> b(x1)}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  b^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  c_2() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a^#(x1) -> c_0(b^#(x1))}
            and weakly orienting the rules
            {a(x1) -> b(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a^#(x1) -> c_0(b^#(x1))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [5]
                  c_0(x1) = [1] x1 + [1]
                  b^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [5]
                  c_2() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {b^#(c(x1)) -> c_2()}
            and weakly orienting the rules
            {  a^#(x1) -> c_0(b^#(x1))
             , a(x1) -> b(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {b^#(c(x1)) -> c_2()}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  c_2() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {b(c(x1)) -> x1}
            and weakly orienting the rules
            {  b^#(c(x1)) -> c_2()
             , a^#(x1) -> c_0(b^#(x1))
             , a(x1) -> b(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {b(c(x1)) -> x1}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [8]
                  a^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [2]
                  c_1(x1) = [1] x1 + [0]
                  c_2() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  a(c(b(x1))) -> c(a(b(a(c(x1)))))
                 , a^#(c(b(x1))) -> c_1(a^#(b(a(c(x1)))))}
              Weak Rules:
                {  b(c(x1)) -> x1
                 , b^#(c(x1)) -> c_2()
                 , a^#(x1) -> c_0(b^#(x1))
                 , a(x1) -> b(x1)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  a(c(b(x1))) -> c(a(b(a(c(x1)))))
                   , a^#(c(b(x1))) -> c_1(a^#(b(a(c(x1)))))}
                Weak Rules:
                  {  b(c(x1)) -> x1
                   , b^#(c(x1)) -> c_2()
                   , a^#(x1) -> c_0(b^#(x1))
                   , a(x1) -> b(x1)}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  c_0(2) -> 2
                 , a^#_0(2) -> 1
                 , c_0_0(1) -> 1
                 , b^#_0(2) -> 1
                 , c_2_0() -> 1}
      
   2) {  a^#(c(b(x1))) -> c_1(a^#(b(a(c(x1)))))
       , a^#(x1) -> c_0(b^#(x1))}
      
      The usable rules for this path are the following:
      {  a(x1) -> b(x1)
       , a(c(b(x1))) -> c(a(b(a(c(x1)))))
       , b(c(x1)) -> x1}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  a(x1) -> b(x1)
               , a(c(b(x1))) -> c(a(b(a(c(x1)))))
               , b(c(x1)) -> x1
               , a^#(c(b(x1))) -> c_1(a^#(b(a(c(x1)))))
               , a^#(x1) -> c_0(b^#(x1))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {a(x1) -> b(x1)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a(x1) -> b(x1)}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  b^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  c_2() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a^#(x1) -> c_0(b^#(x1))}
            and weakly orienting the rules
            {a(x1) -> b(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a^#(x1) -> c_0(b^#(x1))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  c_2() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {b(c(x1)) -> x1}
            and weakly orienting the rules
            {  a^#(x1) -> c_0(b^#(x1))
             , a(x1) -> b(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {b(c(x1)) -> x1}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [8]
                  a^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [1]
                  b^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  c_2() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  a(c(b(x1))) -> c(a(b(a(c(x1)))))
                 , a^#(c(b(x1))) -> c_1(a^#(b(a(c(x1)))))}
              Weak Rules:
                {  b(c(x1)) -> x1
                 , a^#(x1) -> c_0(b^#(x1))
                 , a(x1) -> b(x1)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  a(c(b(x1))) -> c(a(b(a(c(x1)))))
                   , a^#(c(b(x1))) -> c_1(a^#(b(a(c(x1)))))}
                Weak Rules:
                  {  b(c(x1)) -> x1
                   , a^#(x1) -> c_0(b^#(x1))
                   , a(x1) -> b(x1)}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  c_0(3) -> 3
                 , a^#_0(3) -> 4
                 , c_0_0(6) -> 4
                 , b^#_0(3) -> 6}
      
   3) {a^#(c(b(x1))) -> c_1(a^#(b(a(c(x1)))))}
      
      The usable rules for this path are the following:
      {  a(x1) -> b(x1)
       , a(c(b(x1))) -> c(a(b(a(c(x1)))))
       , b(c(x1)) -> x1}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  a(x1) -> b(x1)
               , a(c(b(x1))) -> c(a(b(a(c(x1)))))
               , b(c(x1)) -> x1
               , a^#(c(b(x1))) -> c_1(a^#(b(a(c(x1)))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {a(x1) -> b(x1)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a(x1) -> b(x1)}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [3]
                  c_0(x1) = [0] x1 + [0]
                  b^#(x1) = [0] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  c_2() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {b(c(x1)) -> x1}
            and weakly orienting the rules
            {a(x1) -> b(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {b(c(x1)) -> x1}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [8]
                  a^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  b^#(x1) = [0] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  c_2() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  a(c(b(x1))) -> c(a(b(a(c(x1)))))
                 , a^#(c(b(x1))) -> c_1(a^#(b(a(c(x1)))))}
              Weak Rules:
                {  b(c(x1)) -> x1
                 , a(x1) -> b(x1)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  a(c(b(x1))) -> c(a(b(a(c(x1)))))
                   , a^#(c(b(x1))) -> c_1(a^#(b(a(c(x1)))))}
                Weak Rules:
                  {  b(c(x1)) -> x1
                   , a(x1) -> b(x1)}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  c_0(3) -> 3
                 , a^#_0(3) -> 4}